Activity

  • Cyril Mendez posted an update 6 years, 4 months ago

    Igawa T, Fujiwara M, Takahashi H, Sawasaki T, Endo Y, Seki M, et al. Isolation and identification of ubiquitin-related proteins from Arabidopsis seedlings. J Exp Bot. 2009;60(11):3067?three. 36. Maor R, Jones A, Nuhse TS, Studholme DJ, Peck SC, Shirasu K. Multidimensional protein identification technologies (MudPIT) analysis of Quinagolide (hydrochloride) web ubiquitinated proteins a0022827 in plants. Mol Cell Proteomics. 2007;six(four):601?0. 37. Burande CF, Heuze ML, Lamsoul I, Monsarrat B, Uttenweiler-Joseph S, Lutz PG. A label-free quantitative proteomics strategy to identify E3 ubiquitin ligase substrates targeted to proteasome degradation. Mol Cell Proteomics. 2009;eight(7):1719?7. 38. Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO evaluation toolkit for the agricultural neighborhood. Nucleic Acids Res. 2010;38(Internet Server challenge):W64?0. 39. Lu SX, Knowles SM, Andronis srep43317 C, Ong MS, Tobin EM. CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically within the circadian clock of Arabidopsis. Plant Physiol. 2009;150(two):834?three. 40. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, et al. The JAZ family members of repressors could be the missing hyperlink in jasmonate signalling. Nature. 2007;448(7154):666?1. 41. Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S. A simple helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic development. Plant Cell. 2005;17(7):1953?six. 42. Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, et al. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell. 2007;19(7):2225?five. 43. Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR. An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci U S A. 1988;85(19):7089?3. 44. Donald RG, Cashmore AR. Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J. 1990;9(six):1717?6. 45. Rogers HJ. Programmed cell death in floral organs: how and why do flowers die? Ann Bot. 2006;97(3):309?5. 46. Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, et al. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science. 2008;320(5878):938?1. 47. Feng B, Li L, Zhou X, Stanley B, Ma H. Evaluation with the Arabidopsis floral proteome: detection of more than 2 000 proteins and evidence for posttranslational modifications. J Integr Plant Biol. 2009;51(two):207?three. 48. Washburn MP, Wolters D, Yates 3rd JR. Large-scale evaluation from the yeast proteome by multidimensional protein identification technologies. Nat Biotechnol. 2001;19(three):242?. 49. Liu H, Sadygov RG, Yates 3rd JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004;76(14):4193?01. 50. Florens L, Carozza MJ, Swanson SK, Fournier M, Coleman MK, Workman JL, et al. Analyzing chromatin remodeling complexes utilizing shotgun proteomics and normalized spectral abundance components. Approaches. 2006;40(4):303?1. 51. Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, et al. Quantitative proteomic evaluation of distinct mammalian Mediator complexes using normalized spectral abundance factors.